Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

He-Chao Liu and Ya-Qing Feng*

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: hechaoliu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.138$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-Ethyl 5-methyl 4-(2-chlorophenyl)-6-methyl-2-[(2-phthalimidoethoxy)methyl]-1,4-dihydro-pyridine-3,5-dicarboxylate diethyl ether hemisolvate

The title compound, $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{7} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$, was synthesized from ethyl 3-amino-4-[2-(phthalimido)ethoxy]crotonate and methyl 2-(2-chlorobenzylidene)acetoacetate by the Hantzsch reaction. The dihydropyridine ring is not planar, but adopts a boat conformation. The dihedral angle between the phthalimide and 2-chlorophenyl ring planes is $66.0(3)^{\circ}$.

Comment

Amlodipine is a 1,4-dihydropyridine derivative with potent calcium antagonist and vasodilator properties, and is an important drug in the treatment of angina and hypertension (Zanchetti et al., 2001; Cross et al., 1993). It can be prepared from the title compound, (I), by deprotection (Arrowsmith et al., 1986). The title compound was synthesized from ethyl 3-amino-4-[2-(phthalimido)ethoxy]crotonate and methyl 2-(2chlorobenzylidene)acetoacetate by the Hantzsch reaction (Jie, 2003), which is the usual way for preparing 1,4-dihydropyridine derivatives. The molecular structure of (I) is illustrated in Fig. 1.

The dihydropyridine ring is not planar, but adopts a boat conformation. The phthalimide unit is effectively planar, with a mean deviation of 0.0126 (2) \AA of all contributing atoms from the mean plane. The dihedral angle between the phthalimide unit and the 2-chlorophenyl ring is $66.0(3)^{\circ}$.

Experimental

Ethyl 3-amino-4-[2-(phthalimido)ethoxy]crotonate ($1.2 \mathrm{~g}, 5 \mathrm{mmol}$) and methyl 2-(2-chlorobenzylidene)acetoacetate ($1.6 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol (30 ml) were heated under reflux for 20 h . The ethanol was evaporated off and diethyl ether $(30 \mathrm{ml})$ was added to the distillation residue. After stirring for 1 h , a brown solid was obtained and was recrystallized from methanol to give the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.16(t, 3 \mathrm{H}, J=7.25 \mathrm{~Hz}), 2.43(s, 3 \mathrm{H}), 3.61(s, 3 \mathrm{H}), 3.76(m$, $2 \mathrm{H}), 4.02(m, 4 \mathrm{H}), 4.68(d d, 2 \mathrm{H}, J=16.0,39.5 \mathrm{~Hz}), 5.37(s, 1 \mathrm{H}), 7.02-$ 7.36 ($m, 4 \mathrm{H}$), 7.76-7.90 ($m, 4 \mathrm{H}$). Recrystallization from diethyl ether over 2 d at ambient temperature gave colorless single crystals of (I) suitable for X-ray analysis.
\qquad

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{7} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
$M_{r}=576.03$
Monoclinic, C2/c
$a=32.134(5) \AA$
$b=10.8983$ (15) \AA
$c=22.339$ (3) A
$\beta=132.932$ (2) ${ }^{\circ}$
$V=5727.8(14) \AA^{3}$
$Z=8$
$D_{x}=1.336 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2931
reflections
$\theta=2.5-22.2^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.947, T_{\text {max }}=0.964$
15982 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.138$
$S=0.99$
5874 reflections
391 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0551 P)^{2}\right. \\
& \quad+2.3127 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.735(3)$	$\mathrm{O} 3-\mathrm{C} 16$	$1.451(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.338(3)$	$\mathrm{O} 4-\mathrm{C} 15$	$1.212(3)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.440(3)$	$\mathrm{O} 5-\mathrm{C} 18$	$1.413(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.200(3)$	$\mathrm{O} 5-\mathrm{C} 19$	$1.413(3)$
O3-C15	$1.348(3)$	$\mathrm{N} 2-\mathrm{C} 20$	$1.453(3)$
C9-O1-C10	$116.80(19)$	$\mathrm{C} 14-\mathrm{C} 7-\mathrm{C} 6$	$112.61(18)$
C15-O3-C16	$115.86(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$109.82(18)$
C18-O5-C19	$113.56(18)$	$\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 19$	$112.3(2)$
C13-N1-C11	$122.8(2)$		

The diethyl ether solvent molecule exhibits orientational disorder such that the atom sites O9, C29, C30, C31 and C32 are very close to one another. The disordered diethyl ether was constrained with $\mathrm{C}-\mathrm{C}$ bond lengths of $1.54 \AA, \mathrm{C}-\mathrm{O}$ bond lengths of $1.45 \AA$, and with occupancies of 0.656 and 0.344 . H atoms were positioned geometrically, with C $-\mathrm{H}=0.93-0.98 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius. One of the disorder components for the solvent has been omitted.

$$
32-2
$$

The crystal structure of (I), viewed along the b axis. One of the disorder components for the solvent has been omitted.

This work was supported by the National Natural Science Foundation (grant No. 20376059).

References

Arrowsmith, J. E., Campbell, S. F., Cross, P. E., Stubbs, J. K., Burges, R. A., Gardiner, D. G. \& Blackburn, K. J. (1986). J. Med. Chem. 29, 1696-1702.
Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cross, B. W., Kirby, M. G., Miller, S., Shah, S. H., Sheldon, D. M. \& Sweeney, M. T. (1993). Br. J. Clin. Pract. 47, 237-240.

Jie, J. L. (2003). Name Reactions: A Collection of Detailed Reaction Mechanisms, 2nd ed., pp. 172-173, London: Springer.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zanchetti, A., Omboni, S., La Commare, P., De Cesaris, R. \& Palatini, P. (2001). J. Cardiovasc. Pharmacol. 38, 642-650.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

